
LIFERAY PLUGIN DEVELOPMENT GUIDE

Extending Liferay with Portlets and Themes

Richard L. Sezov, Jr.

Liferay Plugin Development Guide
by Richard L. Sezov, Jr.

Portions reworked from the Themes document at http://wiki.liferay.com/index.php/Themes. Please
see the History tab there for author credit for this material.

Copyright © 2007 by Liferay, Inc. All Rights Reserved.

http://wiki.liferay.com/

Table of ContentsTable of Contents
1. Introduction..5

WHAT IS A PORTLET?...5
WHAT IS A THEME?...6

2. Initial Setup..9
USING THE PLUGINS SDK..12

3. Portlets..13
ANATOMY OF A PORTLET PROJECT..14

4. Themes..17
THEME CONCEPTS..17
ANATOMY OF A THEME..18
JAVASCRIPT..18
SETTINGS ...19
COLOR SCHEMES..20
PORTAL PREDEFINED SETTINGS ...21

portlet-setup-show-borders-default ...21
bullet-style-options ..21

5. Deployment...23
CONCLUSION..24

1. 1. IINTRODUCTIONNTRODUCTION

This guide is a quick start plugins development and deployment guide, using Liferay's Plugins Soft-
ware Development Kit. Plugins (portlets and themes) are now the preferred way to add functionality to
Liferay, as they have several benefits over using the extension environment:

● Plugins can be composed of multiple smaller portlet and theme projects. This reduces the com-
plexity of individual projects, allowing developers to more easily divide up project functionality

● Plugins are completely separate from the Liferay core. Portlet plugins written to the JSR-168 stand-
ard are deployable on any portlet container

● Plugins can be hot deployed (i.e., deployed while the server is running) and are available immedi-
ately. This prevents any server downtime for deployments

There are multiple ways to create portlet and theme plugins for Liferay. Many IDEs on the market
today support portlet projects natively, and theme projects are nothing more than standard web modules
with style sheets, images, and optional JavaScript and Velocity templates in them. Because of this, there are
many tools which can be used to create plugins, from text editors to full blown integrated development en-
vironments. If you are already familiar with such a tool, you may use that tool to create plugins.

Because Liferay makes every effort to remain tool agnostic, we provide a Plugins Software Develop-
ment Kit (SDK) which may be used to create both portlet and theme plugins. This SDK may be used with any
text editor or IDE to create plugins for Liferay. Though it is not necessary to use this SDK to create plugins,
it is the recommended method.

This document will show you how to create both portlet and theme plugins using Liferay's plugin
SDK. In the process, this will also show you the proper project layout for portlet and theme plugins, allow-
ing you to use your own tools to create plugins if you wish to do so.

 What is a Portlet?
Portlets are small web applications that run in a portion of a web page. The heart of any portal im-

Introduction

plementation is its portlets, because portlets are where the functionality of any portal resides. Liferay's
core is a portlet container, and this container is only responsible for aggregating the set of portlets that are
to appear on any particular page. This means that all of the features and functionality of your portal applic-
ation must be in its portlets.

Portlet applications, like servlet applications, have become a Java standard which various portal
server vendors have implemented. The JSR-168 standard defines the portlet specification. A JSR-168 stand-
ard portlet should be deployable on any JSR-168 portlet container. Portlets are placed on the page in a cer-
tain order by the end user and are served up dynamically by the portal server. This means that certain
“givens” that apply to servlet-based projects, such as control over URLs or access to the HttpServletRequest
object, don’t apply in portlet projects, because the portal server generates these objects dynamically.

Portal applications come generally in two flavors: 1) portlets can be written to provide small
amounts of functionality and then aggregated by the portal server into a larger application, or 2) whole ap-
plications can be written to reside in only one or a few portlet windows. The choice is up to those designing
the application. The developer only has to worry about what happens inside of the portlet itself; the portal
server handles building out the page as it is presented to the user.

Most developers nowadays like to use certain frameworks to develop their applications, because
those frameworks provide both functionality and structure to a project. For example, Struts enforces the
Model-View-Controller design pattern and provides lots of functionality, such as custom tags and validating
functionality, that make it easier for a developer to implement certain standard features. With Liferay, de-
velopers are free to use all of the leading frameworks in the JavaEE space, including Struts, Spring, and Java
Server Faces. This allows developers familiar with those frameworks to more easily implement portlets, and
also facilitates the quick porting of an application using those frameworks over to a portlet implementa-
tion.

Additionally, Liferay allows for the consuming of PHP and Ruby applications as “portlets,” so you
do not need to be a Java developer in order to take advantage of Liferay's built-in features (such as user
management, communities, page building and content management). You can use the Plugins SDK to de-
ploy your PHP or Ruby application as a portlet, and it will run seamlessly inside of Liferay. We have plenty
of examples of this; to see them, check out the Plugins SDK from Liferay's public Subversion repository.

 What is a Theme?
Themes are hot deployable plugins which can completely transform the look and feel of the portal.

Theme creators can make themes to provide an interface that is unique to the site that the portal will
serve. Themes make it possible to change the user interface so completely that it would be difficult or im-
possible to tell that the site is running on Liferay.

Liferay provides a well organized, modular structure to its themes. This allows the theme de-
veloper to be able to quickly modify everything from the border around a portlet window to every object on
the page, because all of the objects are easy to find. Additionally, theme developers do not have to custom-
ize every aspect of their themes: if the plugin SDK is used, themes become only a list of differences from the

 6 What is a Theme?

Introduction

default theme. This allows themes to be smaller and less cluttered with extraneous data that already exists
in the default theme (such as graphics for emoticons for the message boards portlet).

What is a Theme? 7

2. 2. IINITIALNITIAL S SETUPETUP

Setting up the Plugins SDK is pretty straightforward. Download the archive from Liferay's Addition-
al Files download page, in the section for developers here:
http://www.liferay.com/web/guest/downloads/additional. Unzip the file to the location in which you will
be doing your work. You will see that it has the following directory structure:

The two folders you will be working in mostly are the port-
lets and the themes folders. It is here that you will place your portlet
and theme plugin projects.

But first you will need to create a configuration file and
make sure you have some tools installed. Building portlet and
theme projects in the plugins SDK requires that you have Ant 1.7.0
or higher installed on your machine. Download the latest version of
Ant from http://ant.apache.org. Uncompress the archive into an
appropriate folder of your choosing.

Next, set an environment variable called ANT_HOME which
points to the folder to which you installed Ant. Use this variable to
add the binaries for Ant to your PATH by adding ANT_HOME/bin to
your PATH environment variable. Set another environment variable
called ANT_OPTS with the proper memory settings for building pro-
jects.

You can do this on Linux by modifying your .bash_profile
file as follows (assuming you installed Ant in /java):
ANT_HOME=/java/apache-ant-1.7.0
ANT_OPTS="-Xms256M -Xmx512M"
PATH=$PATH:$HOME/bin:$ANT_HOME/bin
export ANT_HOME ANT_OPTS PATH

Log out and log back in to make these settings take effect.

Illustration 1: Plugins SDK folder
structure

http://ant.apache.org/
http://www.liferay.com/web/guest/downloads/additional

Initial Setup

You can do this on Windows by going to Start -> Control Panel, and double-clicking the System
icon. Go to Advanced, and then click the Environment Variables button. Under System Variables, select
New. Make the Variable Name ANT_HOME and the Variable Value the path to which you installed Ant (e.g.,
c:\java\apache-ant-1.7.0, and click OK.

Select New again. Make the Variable Name ANT_OPTS and the Variable Value "-Xms256M
-Xmx512M" and click OK.

Scroll down until you find the PATH environment variable. Select it and select Edit. Add
%ANT_HOME%\bin to the end or beginning of the Path. Select OK, and then select OK again. Open a com-
mand prompt and type ant and press Enter. If you get a build file not found error, you have correctly in-
stalled Ant. If not, check your environment variable settings and make sure they are pointing to the direct-
ory to which you unzipped Ant.

You will need a Liferay runtime on which to deploy your plugins to test them. We recommend us-
ing the Liferay-Tomcat bundle which is available from Liferay's web site, as Tomcat is small, fast, and takes
up less resources than most other containers. Download the latest Liferay-Tomcat bundle and unzip it to a
folder on your machine. You can start Tomcat by navigating to the <Tomcat Home>/bin folder and running
the startup command (i.e., startup.bat for Windows or ./startup.sh for Linux or Mac).

You will notice that the plugins SDK contains a file called build.properties. Open this file in the text
editor or IDE you will be using to create portlets and themes. At the top of the file is a message, “DO NOT
EDIT THIS FILE.” This file contains the settings for where you have Liferay installed and where your deploy-
ment folder is going to be, but you don't want to customize this file. Instead, create a new file in the same
folder called build.username.properties, where username is your user ID on your machine. For example, if your
user name is jsmith (for John Smith), you would create a file called build.jsmith.properties.

You will likely need to customize the following properties:

 10 Initial Setup

Initial Setup

app.server.dir=
auto.deploy.dir=
app.server.lib.portal.dir=
app.server.portal.dir=
java.compiler=

app.server.dir: This is the folder into which you have installed your development version of
Liferay.
auto.deploy.dir: This is the folder into which plugins should be placed in order for them to
be hot deployed to Liferay. By default, this folder is in $HOME/liferay/deploy.
app.server.lib.portal.dir: This folder is where Liferay's libraries are installed. If you are us-
ing the Liferay-Tomcat bundle, for example, you would set this to $

Initial Setup 11

Illustration 2: The build.properties file

Initial Setup

{app.server.dir}/webapps/ROOT/WEB-INF/lib.
app.server.portal.dir: This folder is the folder to which Liferay is installed inside of your ap-
plication server. For the Liferay-Tomcat bundle, set this to ${app.server.dir}/webapps/ROOT.
java.compiler: The default value for this is the Eclipse compiler, ECJ. ECJ is an alternate Java
compiler which performs very fast. If you do not have ECJ installed, the ant script will install
it for you by copying ecj.jar to your Ant folder. If you do not wish to use ECJ to compile your
code, you can set this to modern. This will cause the ant scripts in the plugins SDK to use the
default Java compiler from your JDK.

Save the file. You are now ready to start using the plugins SDK.

 Using the Plugins SDK
The plugins SDK can be used to house all of your portlet and theme projects enterprise-wide, or

you can have separate plugins SDK projects for each of your portal projects. For example, if you have an in-
ternal Intranet which uses Liferay and which has some custom written portlets for internal use, you could
keep those portlets and themes in their own plugins SDK project in your source code repository. If you also
have an external instance of Liferay running for your public Internet web site, you could have a separate
plugins SDK with those projects (portlet and theme) in your source code repository. Or you could further
separate your projects by having a different plugins SDK project for each portlet or theme project. It's
really up to you.

You could also use the plugins SDK as a simple cross-platform new project generator. You can gen-
erate the project using the ant scripts in the plugins SDK and then copy the resulting project from the port-
lets or themes folder to your IDE of choice. You would need to customize the ant script if you wish to do that,
but this allows organizations which have strict standards for their Java projects to adhere to those stand-
ards.

 12 Using the Plugins SDK

3. 3. PPORTLETSORTLETS

Creating portlets with the plugins SDK is a straightforward process. As noted before, there is a
portlets folder inside of the plugins SDK folder. This is where your portlet projects will reside. To create a
new portlet, first decide what its name is going to be. You need both a project name (without spaces) and a
display name (which can have spaces). When you have decided on your portlet's name, you are ready to
create the project. On Linux and Mac, from the portlets directory, enter the following command:

./create.sh <project name> “<portlet title>”

For example, to create a portlet with a project folder of hello-world and a portlet title of Hello World,
type:

./create.sh hello-world “Hello World”

On Windows, you would type:

create.bat hello-world “Hello World”

You should get a BUILD SUCCESSFUL message from Ant, and there will now be a new folder inside of the
portlets folder in your plugins SDK. This folder is your new portlet project. This is where you will be imple-
menting your own functionality. At this point, if you wish, you can check your Plugins SDK into a source
code repository in order to share your project with others.

Alternatively, if you will not be using the Plugins SDK to house your portlet projects, you can copy
your newly created portlet project into your IDE of choice and work with it there. If you do this, you may
need to make sure the project references some .jar files from your Liferay installation, or you may get com-
pile errors. Since the ant scripts in the Plugins SDK do this for you automatically, you don't get these errors
when working with the Plugins SDK.

To resolve the dependencies for portlet projects, see the class path entries in the build-common.xml
file in the Plugins SDK project. You will be able to determine from the plugin.classpath and portal.classpath
entries which .jar files are necessary to build your newly created portlet project.

Portlets

 Anatomy of a Portlet Project
A portlet project is made up at a minimum of three components:

1. Java Source

2. Configuration files

3. Client-side files (*.jsp, *.css, *.js, graphics, etc.)

These files are stored in a standard directory structure which
looks like the illustration to the left. The example is a fully deployable
portlet which can be deployed to your configured Liferay server by run-
ning the deploy ant task.

The default portlet is configured as a standard JSR-168 portlet
which uses separate JSPs for its three portlet modes (view, edit, and help).
Only the view.jsp is implemented in the example; the code will need to be
customized to enable the other modes.

The Java Source is stored in the docroot/WEB-INF/src folder. You
can go in and customize (and rename) the portlet class and add any classes

necessary to implement your functionality.

The Configuration Files are stored in the docroot/WEB-INF folder. The two standard JSR-168 port-
let configuration files, web.xml and portlet.xml are here, as well as three Liferay-specific configuration files.
These files are completely optional, but are important if your portlets are going to be deployed on a Liferay
Portal server.

liferay-display.xml: This file describes for Liferay what category the portlet should appear under in
the Add Content window.

liferay-portlet.xml: This file describes some optional Liferay-specific enhancements for JSR-168 port-
lets that are installed on a Liferay Portal server. For example, you can set whether a portlet is instanceable,
which means that you can place more than one instance on a page, and each portlet will have its own data.
Please see the DTD for this file for further details, as there are too many settings to list here. The DTD may
be found in the definitions folder in the Liferay source code.

liferay-plugin-package.properties: This file describes the plugin to Liferay's hot deployer. One of the
things that can be configured in this file is dependency .jars. If a portlet plugin has dependencies on partic-
ular .jar files that already come with Liferay, you can specify them in this file and the hot deployer will
modify the .war file on deployment so that those .jars are on the class path.

Client Side Files are the .jsp, .css, and JavaScript files that you write to implement your portlet's
user interface. These files should go in the docroot folder somewhere—either in the root of the folder or in a
folder structure of their own. Remember that with portlets you are only dealing with a portion of the HTML
document that is getting returned to the browser. Any HTML code you have in your client side files should

 14 Anatomy of a Portlet Project

Illustration 3: Portlet project
structure

Portlets

be free of global tags such as <html> or <head>.

The default portlet project that is created is a simple JSR-168 portlet, with no bells and whistles.
You can use this framework to write your code to the JSR-168 portlet API and implement all the functional-
ity that you need. There are many portlets that are implemented this way. The standard portlet API is easy
to use and straightforward.

Many developers, however, prefer to use a particular framework when developing web applica-
tions. Several frameworks, such as Struts, Spring, or Java Server Faces, make the development of web ap-
plications more straightforward and easier to follow than a standard servlet implementation would be. All
three of the frameworks mentioned can also be used to create portlets. Liferay has many examples of how
these frameworks would be used in our public Subversion repository at SourceForge. You can grab them by
checking them out of the repository or by accessing our Official Plugins page at
http://www.liferay.com/web/guest/downloads/official_plugins.

You can also check out our Portlet Development Guide, which you can find in the same location you
found this document. That guide gives you step-by-step instructions for creating portlets.

Anatomy of a Portlet Project 15

http://www.liferay.com/web/guest/downloads/official_plugins

4. 4. TTHEMESHEMES

Creation of themes is done in a similar manner to the creation of portlets. There is a themes folder
inside the plugins SDK where all new themes reside. To create a new theme, you run a command in this
folder similar to the one you used to create a new portlet. For Linux and Mac, type:

./create.sh <project name> “<theme title>”

For example, to create a theme with a project folder of hello-world and a theme title of Hello World,
type:

./create.sh hello-world “Hello World”

On Windows, you would type:

create.bat hello-world “Hello World”

This command will create a blank theme in your themes folder.

 Theme Concepts
Custom themes are based on differences between the custom code and the default Liferay theme,

called Classic. You will notice that there is a _diffs folder inside of your custom theme folder. This is where
you will place your theme code. You only need to customize the parts of your theme that will differ from
what is already displayed in the Classic theme. To do this, you mirror the directory structure of the Classic
theme inside of the _diffs folder, placing only the folders and files you need to customize there.

For example, to customize the Dock (a necessary component of all themes), you would copy just
the dock.vm file from your Liferay installation (the Classic theme is in <Tomcat
Home/webapps/ROOT/html/themes/classic) into your theme's _diffs/templates folder. You can then open this
file and customize it to your liking. For example, you might want to change the welcome message to
something else, like “Quick Links.”

For custom styles, we recommend you create a css folder and place a single file there called custom-
.css. This is where you would put all of your new styles and all of your overrides to the default Liferay styles.

Themes

It is best to do it this way because of the order in which the .css files are loaded. Custom.css is loaded last,
and so anything inside this file will be guaranteed to override any styles that are in any of the other style
sheets.

 Anatomy of a Theme
The folders in themes are designed to be easy to navigate and understand. Currently, this is what

the new directory structure looks like:
/THEME_NAME/
 /css/
 base.css
 custom.css
 main.css
 navigation.css
 forms.css
 portlet.css
 deprecated.css
 tabs.css
 layout.css
 /images/
 (many directories)
 /javascript/
 javascript.js
 /templates/
 dock.vm
 navigation.vm
 portal_normal.vm
 portal_popup.vm
 portlet.vm
/WEB-INF
/META-INF

You can copy any of these files from the default custom theme to your _diffs folder in order to cus-
tomize that portion of the theme.

 JavaScript
Liferay now includes the jQuery JavaScript library, and theme developers can include any plugins

that jQuery supports. The $ variable, however, is not supported (for better compliance with different port-
lets). Inside of the javascript.js file, you will find three different function calls, like this:
 jQuery(document).ready(
 function() {
 //Custom javascript goes here
 }
);
 Liferay.Portlet.ready(
 function(portletId, jQueryObj) {
 //Custom javascript goes here
 }
);
 jQuery(document).last(
 function() {
 //Custom javascript goes here
 }
);

 18 JavaScript

Themes

jQuery(document).ready(fn);
When this gets passed a function (it can be a defined function, or an anonymous one like above), the
function gets executed as soon as the HTML in the page has finished loading (minus any portlets
loaded via ajax).

Liferay.Portlet.ready(fn);
When this gets passed a function (it can be a defined function, or an anonymous one like above), the
function gets executed after each portlet has loaded. The function that gets executed receives two
variables, portletId and jQueryObj. portletId is the id of the current portlet that has loaded, and
jQueryObj is the jQuery object of the current portlet element.

jQuery(document).last(fn);
When this gets passed a function (it can be a defined function, or an anonymous one like above), the
function gets executed after everything—including AJAX portlets—gets loaded onto the page.

Besides theme-wide JavaScript there is also support for page specific JavaScript. The Page Settings
form provides three separate JavaScript pieces that you can insert anywhere in your theme. Use the follow-
ing to include the code from these settings:
$layout.getTypeSettingsProperties().getProperty("javascript-1")
$layout.getTypeSettingsProperties().getProperty("javascript-2")
$layout.getTypeSettingsProperties().getProperty("javascript-3")

The content of the JavaScript settings fields are stored in the database as Java Properties. This
means that each field can only have one line of text. For multi-line scripts, the newlines should be escaped
using \, just as in a normal .properties file.

 Settings
Each theme can define a set of settings to make it configurable.

The settings are defined in the liferay-look-and-feel.xml using the following syntax:
<settings>
 <setting key="my-setting" value="my-value />
 ...
</settings>

These settings can be accessed in the theme templates using the following code:
$theme.getSetting("my-setting")

For example, say we need to create two themes that are exactly the same except for some changes
in the header. One of the themes has more details while the other is smaller (and takes less screen real es-
tate). Instead of creating two different themes, we are going to create only one and use a setting to choose
which header we want.

While developing the theme we get to the header. In the portal_normal.vm template we write:
 if ($theme.getSetting("header-type") == "detailed") {
 #parse("$full_templates_path/header_detailed.vm")
 } else {
 #parse("$full_templates_path/header_brief.vm")

Settings 19

Themes

 }

Then when we write the liferay-look-and-feel.xml, we write two different entries that refer to the
same theme but have a different value for the header-type setting:
 <theme id="beauty1" name="Beauty 1">
 <root-path>/html/themes/beauty</root-path>
 <templates-path>${root-path}/templates</templates-path>
 <images-path>${root-path}/images</images-path>
 <template-extension>vm</template-extension>
 <settings>
 <setting key="header-type" value="detailed" />
 </settings>
 <color-scheme id="01" name="Blue">
 <css-class>blue</css-class>
 <color-scheme-images-path>${images-path}/color_schemes/${css-class}</color-scheme-im-
ages-path>
 </color-scheme>
 ...
 </theme>
 <theme id="beauty2" name="Beauty 2">
 <root-path>/html/themes/beauty</root-path>
 <templates-path>${root-path}/templates</templates-path>
 <images-path>${root-path}/images</images-path>
 <template-extension>vm</template-extension>
 <settings>
 <setting key="header-type" value="brief" />
 </settings>
 <color-scheme id="01" name="Blue">
 <css-class>blue</css-class>
 <color-scheme-images-path>${images-path}/color_schemes/${css-class}</color-scheme-im-
ages-path>
 </color-scheme>
 ...
 </theme>

 Color Schemes
Color schemes are specified using a CSS class name, with which you can not only change colors,

but also choose different background images, different border colors, and so on.

In your liferay-look-and-feel.xml (located in WEB-INF), you would specify the class names like so:
 <theme id="my_theme" name="My Theme">
 <root-path>/my_theme</root-path>
 <templates-path>${root-path}/templates</templates-path>
 <images-path>${root-path}/images</images-path>
 <template-extension>vm</template-extension>
 <color-scheme id="01" name="Blue">
 <css-class>blue</css-class>
 <color-scheme-images-path>${images-path}/color_schemes/${css-
class}</color-scheme-images-path>
 </color-scheme>
 <color-scheme id="02" name="Green">
 <css-class>green</css-class>
 </color-scheme>
 </theme>

Inside of your css folder, create a folder called color_schemes. Inside of that folder, place a .css file

 20 Color Schemes

Themes

for each of your color schemes. In the case above, we would could either have just one called green.css and
let the default styling handle the first color scheme, or you could have both blue.css and green.css.

Now, inside of your custom.css, you would place the following lines:
 @import url(color_schemes/blue.css);
 @import url(color_schemes/green.css);

You can identify the styling for the CSS by using prefixes. In blue.css you would prefix all of your
css styles like this:
 .blue a {color: #06C;}
 .blue h1 (border-bottom: 1px solid #06C}

And in green.css you would prefix all of your CSS styles like this:
 .green a {color: #06C;}
 .green h1 (border-bottom: 1px solid #06C}

 Portal predefined settings
The portal defines some settings that allow the theme to determine certain behaviors. So far there

are only two predefined settings but this number may grow in the future.

 portlet-setup-show-borders-default

If set to false, the portal will turn off borders by default for all the portlets.

The default is true.

Example:
<settings>
 <setting key="portlet-setup-show-borders-default" value="false" />
</settings>

This default behavior can be overridden for individual portlets using:

• liferay-portlet.xml
• Portlet CSS popup setting

 bullet-style-options

The value must be a comma separated list of valid bullet styles to be used. The default is an empty
list. The navigation portlet will not show any option in the portlet configuration screen.

Example:
<settings>
 <setting key="bullet-style-options" value="classic,cool,tablemenu" />
</settings>

The bullet styles referred to in the setting are defined in any of the CSS files of the theme following
this pattern:
.nav-menu-style-{BULLET_STYLE_OPTION} {

Portal predefined settings 21

Themes

 ... CSS selectors ...
}

Here is an example of the HTML code that you would need to style through the CSS code. In this
case the bullet style option is cool:
<div class="nav-menu nav-menu-style-cool">
 <h3>Community</h3>
 <ul class="layouts">
 <li class=""><a class=""
href="/web/guest/community/documentation">Documentation
 <li class=""> Wiki
 <li class=""> Forums

</div>

Using your CSS skills and, if desired, some unobtrusive Javascript it's possible to implement any
type of menu.

For further information about themes, please see http://wiki.liferay.com.

 22 bullet-style-options

http://wiki.liferay.com/
http://wiki.liferay.com/

5. 5. DDEPLOYMENTEPLOYMENT

You will notice that when your project was created in the Plugins SDK, an ant script was also cre-
ated for it. To deploy a plugin, you run the deploy ant task in your project. This task will compile your plu-
gin (theme or portlet), store it in a dist folder, and deploy your plugin to your local Liferay installation.

This is done by copying the plugin .war file to your Liferay hot deploy folder. If your local installa-
tion of Liferay is running, your plugin will be automatically picked up by the server and deployed. Watch
your Liferay console for messages. When you see

<plugin> registered successfully.

in the console, your plugin has been deployed to the server and is ready for use.

If your plugin is a portlet, you can add it to a page by hovering over the Dock and clicking Add Con-
tent. Find your portlet in the category you specified in your liferay-display.xml file. If you have not yet cus-
tomized the file, your portlet will be in the Samples category. Simply click the Add button next to it to add it
to the page you are currently viewing.

If your Liferay installation is running in debug mode inside of your IDE, you can set breakpoints in
your code and your debugger will stop the execution of the portlet in the specified place so you can step
through the code. If you find a problem, fix the problem and then run the deploy ant task again to redeploy
your portlet to the server for further testing.

If your plugin is a theme, you can choose it for the page you are viewing by hovering over the Dock
and clicking Page Settings. Go to the Look and Feel tab and your theme should be in the list. Select it and it
will be applied to the page you are viewing. You can then click the Go back to full view link and see your
theme applied to the full page.

When you are finished implementing your features and debugging your code, create a final build
for it by running the deploy ant task again. The plugin will reside in a dist folder in the project folder. You
can then take the .war file stored there and deploy it to any running Liferay portal. All that is necessary for
this is to copy the file into the hot deploy folder defined for the Liferay portal server. The file can also be

Deployment

uploaded to a server housing a Liferay Software Catalog. Your portal administrator can then point the Plu-
gin Installer portlet to this software catalog and through a simple point and click interface install any plu-
gins that the development team makes available on their Software Catalog. For more information on how to
configure this, please see the Liferay Administration Guide.

 Conclusion
You can see that the Plugins SDK provides a full development lifecycle for both portlet projects

and theme projects. It is tool-agnostic, so developers are free to use the tools of their choice to create port-
let projects and theme projects. It provides a method to create and deploy theme projects and portlet pro-
jects with little effort and which supports the majority of application server platforms. And finally, it
provides a structure to group the portlets and themes that go together with an overall portal project. We
hope that you will enjoy using the Plugins SDK and that it will be a useful tool for you to create your port-
lets and your themes.

And remember, if you create open source portlets and themes, you can make them available on
Liferay's community Software Catalog (http://www.liferay.com/web/guest/community/community_plu-
gins).

Happy coding!

 24 Conclusion

http://www.liferay.com/web/guest/community/community_plugins
http://www.liferay.com/web/guest/community/community_plugins

	1. Introduction
	What is a Portlet?
	What is a Theme?

	2. Initial Setup
	Using the Plugins SDK

	3. Portlets
	Anatomy of a Portlet Project

	4. Themes
	Theme Concepts
	Anatomy of a Theme
	JavaScript
	Settings
	Color Schemes
	Portal predefined settings
	portlet-setup-show-borders-default
	bullet-style-options

	5. Deployment
	Conclusion

